MOTOR & MOTION CONTROL BASJCS PART1: STEPPER

SLOW MOVEMENT AND POSITIONING APPLICATIONS

- standard size from 6mm to 86mm (0.24 to 34 inch)
- resolution from 4 to 800 fullstep positions per revolution
- easy positioning
- cost effective
- high torque at low speed

THE EASIEST STEPPER MOTOR

4 coils,

- 2 in series connection = 1 phase
- 1 magnet (compass needle)

FULLSTEP OPERATION

Fullstep operation: always current on both phases

1 electrical period = 4 fullsteps

FULLSTEP OPERATION

always current on both phases 4 fullsteps = 1 electrical period

FULLSTEP OPERATION

simulation: path – time diagram

disadvantage of fullstep operation: high transient oscillation of the rotor position

HALFSTEP OPERATION

halfstep operation: current on one phase and current on both phases alternating

1 electrical period = 8 halfsteps

HALFSTEP OPERATION

HALFSTEP OPERATION

current on one phase and current on both phases alternating 8 halfsteps = 1 electrical period

MICROSTEP OPERATION

THE EASIEST STEPPER MOTOR WITH 16 MICROSTEPS

16 microsteps = 1 fullstep 4 fullsteps = 1 rotation 64 microsteps = 1 rotation sinewave and cosinewave with 16 analog values

FULLSTEP VS. MICROSTEP OPERATION

microstep operation: less transient oscillation of the rotor position -> smooth movement

HYBRID STEPPER MOTORS

- high torque
- high resolution (e.g. 200 steps / rev)
- flange with NEMA standard: e.g. NEMA 11 (1.1 in / 28 mm) NEMA 17 (1.7 in / 42 mm) NEMA 23 (2.3 in / 57 mm) NEMA 32 (3.2 in / 86 mm)

PM/PERMANENT MAGNET/CAN STACK-STEPPER MOTORS

- low torque
- low resolution (e.g. 25 steps / rev)
- very cost effective

CONSTANT CURRENT CONTROL WITH PWM CHOPPER

one H-bridge per motor coil

MOSFETS are switched on and off very fast in order go get the required current in the coil

chopper frequency e.g. 20kHz

TORQUE OVER STEPFREQUENCY

ROTOR VS. MAGNETIC FIELD ROTATION

magnetic rotation field

rotor rotation

because of the rotor inertia the motor needs a acceleration phase up to the desired velocity

motor stalls, when the rotor cannot follow the magnetic rotation field

LINEAR ACCELERATION RAMP

for many applications a linear acceleration ramp works

all TRINAMIC stepper motor controller are able to make linear acceleration ramps

S-SHAPED ACCELERATION RAMP

when sensitive things have to be moved S-shaped acceleration ramps can be used

following TRINAMIC products can make s-shaped ramps: TMC454, TMC457, MONOpack 2, TMCM-142

ADVANTAGE STEPPER MOTOR

- open loop, no feedback necessary for position control
- high torque at rest and low speed
- high torque from a given package size
- no gearing needed
- low cost for positioning applications

ADVANTAGE MICROSTEPPING

- smooth and noiseless movement
- higher dynamic
- less transient oscillation -> less resonances -> no step loss

all TRINAMIC stepper motor products are working with microstepping up to 2048 microsteps per fullstep

RESTRICTIONS TRINAMIC SOLUTIONS

- can lose steps without feedback
 -> integrated sensOstep[™] encoder
- heating due to constant current flow
 -> dynamic current control
- excessive loads can stall the motor
 -> sensorless stall detection stallGuard[™]
- not for high speed
 - -> brush less DC motor solutions (BLDC)

TOOL: Torque Conversion Chart

ALL DATA BASED ON SI-UNITS

THANK YOU

